
Journal of Approximation Theory 96, 258�280 (1999)

Adaptive Multiresolution Analysis on the
Dyadic Topological Group

Bl. Sendov*

Center of Informatics and Computer Technology, Bulgarian Academy of Sciences,
``Acad. G. Bonchev'' street, Block 25A, 1113 Sofia, Bulgaria

E-mail: sendov�amigo.acad.bg

Communicated by Charles K. Chui

Received March 31, 1997; accepted in revised form December 9, 1997

A type of multiresolution analysis on the space of continuous functions defined
on the dyadic topological group is proposed, depending on free parameters.
The appropriate choice of parameters is used to adapt this analysis to a given
function. � 1999 Academic Press

1. INTRODUCTION

The classical multiresolution analysis in the space of the square-
integrable functions f # L2(R), where R is the set of real numbers, is based
on a sequences of closed subspaces [Vj]j # Z and a set of operators d,
[tj, k] j, k # Z , where Z is the set of integers, which satisfy the conditions

Vj/Vj+1 \j # Z, (1.1)

.
+�

j= &�

Vj is dense in L2(R) and ,
+�

j= &�

Vj=[0], (1.2)

f (x) # Vj � d( f ; x)= f (2x) # Vj+1 \j # Z, (1.3)

f (x) # Vj O tj, k( f ; x)= f (x&2&jk) # Vj \j, k # Z. (1.4)

The definitions of the operators d, [tj, k] j, k # Z explore transformations in
the group R, dilate, and translate.

In this paper, we define a type of multiresolution analysis on L2(G),
where G is the dyadic topological group [8], which is compact.

There are many general and profound studies of multiresolution analysis
over different groups, see for example [1] and [5]. Our study differs in
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one important point from [5], where the fundamental theorem for the
multiresolution analysis over dyadic group is proved. The study in [5]
is oriented to ``locally compact Abelian (LCA) groups, resembling the
familiar constructions of Y. Meyer [7] or S. Mallat [6] on n-dimensional
Euclidean space.'' We consider the compact dyadic group, in which the
diletes do not work. The compact dyadic group is important for the
applications as it is isomorphic to the unit interval [0, 1] of real numbers,
to the unit square [0, 1]2, to the unite cube [0, 1]3, and so on. The
modifications of the conditions (1.1)�(1.4), which we use, replacing Z with
Z+, the natural numbers, and the operators in (1.3) and (1.4) are different
as it is impossible to use dilate in the compact dyadic group.

To give an example of a multiresolution analysis over the compact
dyadic group, we start by defining the dyadic topological group G itself.

G is the infinite direct product of the Abelian group with two elements
0 and 1, and group operation +4 , addition modulo 2. Thus the dyadic
group G is the set of all 0, 1 sequences x=(x1 , x2 , x3 , ...) in which the
group operation is

x+y=(x1+4 y1 , x2+4 y2 , x3+4 y3 , ...).

The dyadic group is a compact metric space [8] with distance

;(x, y)= :
�

i=1

2&i |xi& yi |= :
�

i=1

2&i(xi+4 y i). (1.5)

Set the notation

2&k=(0, 0, 0, ..., 0

k&1

, 1, 0, 0, 0, ...),

and the correspondence l: G � [0, 1],

l(x)=l((x1 , x2 , x3 , ...))=x= :
�

i=1

2&ixi # [0, 1]. (1.6)

If f = f (x) is a function defined on G, then the function

f� (x)= f� (l(x))= f (x) (1.7)

is a function defined on [0, 1]. We shall comment later on how to define
f� when one real number x # [0, 1] corresponds to two different (binary
rational) elements from G.
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The example we have in mind, of a multiresolution analysis over the
compact dyadic group G, is defined by the following conditions [11]
corresponding to (1.1)�(1.4)

Vj/Vj+1 for j=0, 1, 2, ..., (1.8)

.
+�

j=0

Vj is dense in L2(G) and V0 is one dimensional, (1.9)

f (x) # Vj O f (x) # Vj+1 for j=0, 1, 2, ..., (1.10)

f (x) # Vj O tj+1( f ; x)=(&1)xj+1 f (x+2&j&1) # Vj+1 (1.11)

for j=0, 1, 2, ... . In fact (1.10) is to ensure (1.8).
Let ,0(x)=1, x # G and V0 be the span over ,0 . V0 is one dimensional

subspace of L2(G). If we apply (1.10) and (1.11), it is easy to see that Vj

contains 2 j orthonormal functions [,n]2 j&1
n=0 , such that [,� n]2 j&1

n=0 are the
first 2 j Walsh functions. From this it follows that (1.9) is satisfied.

These 2 j orthonormal functions are ``translates'' of the function ,0 ,

,1(x)=t1(,0 ; x), ,2(x)=t2(,0 ; x), ,3(x)=t2(,1 ; x)=t2 t1(,0 ; x),

,4(x)=t3(,0 ; x), ,5(x)=t3(,1 ; x)=t3t1(,0 ; x), ...,

,2 j&1(x)=tj t j&1 t j&2 } } } t1(,0 ; x).

Following the analogy we may call the function ,0 a wavelet. To dis-
tinguish between the different types of multiresolution analysis we have in
hand, we call ,0 first function.

Our goal further will be to find different first functions. A class of first
functions is defined (Definition 2.5), called dyadic exponential functions.
The reason for this name is that ,(x) is a first function if ,� (x)=e:x, where
: is a real number. We do not know wether there exist first functions which
are not dyadic exponential functions.

The dyadic exponential functions depend on free parameters. These
parameters may be used to adapt the multiresolution analysis to an
arbitrary given function.

Another difference of the considered multiresolution analysis is that its
adaptation depends on continuous parameters. In the classical case of
Malvar wavelets and wavelet packets [7], the adaptation depends on dis-
crete choices.

In Section 2 some definitions and statements for the topological dyadic
group G and for the real continuous functions f # C, defined on G, are
presented. The definitions of dyadic exponential function and Rademacher
transformation of rank 1, 2, 3 are given, which are used to define the
operators for multiresolution analysis.
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In Section 3 the theorem for multiresolution analysis in C is proved. In
Section 4 the adaptation of a first function to a given function is con-
sidered. A criterion (see Definition 4.1) for adaptation of the considered
multiresolution analysis, inspired by the criterion of R. Coifman and
V. Wickerhauser [3], is formulated and a theorem, solving the problem for
practical implementation of this criterion, is proved.

2. DYADIC FUNCTIONS

We start this section with some definitions and properties of the dyadic
group G and the isomorphisms between G and the unit cube [0, 1]n,
n=1, 2, 3, ... .

2.1. Dyadic Topological Group

In the Introduction the group G was introduced. Now set the additional
notations

0=(0, 0, 0, ...), 1=(1, 1, 1, ...),

and

G( j)
nk :=[x : x # G, 2n&1xn(k&1)+1+2n&2xn(k&1)+2+ } } } +xnk= j].

An element x of G is called left rational if it has finite number of coor-
dinates equal to 0 and right rational if it has finite number of coordinates
equal to 1. The elements 0, 2&k are right rational, and 1 is left rational.

The order in G is lexicographic. For every element x # G we have
0�x�1. For x<y denote by [x, y] the set of all z # G such that x�z�y.

Definition 2.1. Let

x=(x1 , x2 , x3 , ..., xk , 0, 0, 0, ...), y=(x1 , x2 , x3 , ..., xk , 1, 1, 1, ...).

The segment

[x, y]=[k; p], where p=2k&1x1+2k&2x2+ } } } +2xk&1+xk

is called a pixel of rank k.

Every pixel [k; p] of rank k consists of two pixels [k+1; 2p] and
[k+1; 2p+1] of rank k+1.
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It is obvious that

[k; 0] _ [k; 1] _ [k; 2] _ } } } _ [k; 2k&1]=[0; 0]=[0, 1]=G,

where [k; p] & [k; q]=< for p{q.
If x # [k; p], then x=l(x) # [ p2&k, ( p+1) 2&k].
The function l, defined by (1.6), does not have a single-valued inverse on

the rational elements of G. Consider the right rational in this case, with
one exception. Let m: [0, 1] � G be the inverse of the function l, with the
agreement that if x # [0, 1] is a binary rational number, then m(x) is the
right rational element of G corresponding to x. The exception is for
1 # [0, 1], namely, m(1)=1=(1, 1, 1, ...), which is left rational. Thus, for
every x # [0, 1], l(m(x))=x, and for every x # G, m(l(x))=x. By the func-
tions l and m, a correspondence between G and [0, 1] is defined.

To define a correspondence between G and the unit square [0, 1]2, we
may proceed as follows. For every x=(x1 , x2 , x3 , ...) # G, let

!= :
�

i=1

2&ix2i # [0, 1], '= :
�

i=1

2&ix2i+1 # [0, 1],

and

l2(x)=(!, ') # [0, 1]2.

The inverse function m2 to l2 is defined obviously by m, the inverse func-
tion of l.

It is clear that there exist many different correspondences between G and
[0, 1]n for n=3, 4, ... .

2.2. Continuous Dyadic Functions
A function f, defined on G with real values f (x) # R, is called a dyadic

function. The set of all these functions f : G � R is denoted by G.
Dyadic functions have been considered by many authors, see for example

[4], in connection with the Walsh functions and other problems. Usually,
the dyadic argument is used only for convenience and the topology of the
group G is not explored for the properties of the considered functions. In
this paper, the topology of G is used to define the continuity of a dyadic
function [8].

The set of points (x, f (x)) # G_R is the graph of the dyadic function f,
which is impossible to draw on paper. Usually we consider the set of points
(l(x), f (x)) # [0, 1]_R, where l is defined by (1.6), as a ``graphical repre-
sentation'' of the dyadic function f. When the values of f, for two rational
elements x, x$ # G corresponding to one real number x=l(x)=l(x$), are
different, we join the points (x, f (x)), (x, f (x$)) with a vertical segment.
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The graphical representation of a dyadic function f (x) is the completed
graph [9, 10] of the multi-valued function f� (x)= f (x), where x=l(x).

This procedure for drawing a graph of a function is widely accepted and
used without comments. In [5], the graphs of the dyadic functions are
depicted in the same manner.

The uniform norm of a bounded function f # G is defined as

& f &=sup[ | f (x)|; x # G].

Definition 2.2. A dyadic function f # G is continuous in the point
x0 # G if for every =>0 there exists a $=$(=)>0, such that

| f (x)& f (x0)|<= for ;(x, x0)<$.

If a dyadic function f is continuous at every point x # G, then it is
uniformly continuous, as G is compact [8].

The set of all uniformly continuous dyadic functions is denoted by C.
The module of continuity of a function f # G is

|( f ; $)=sup[ | f (x)& f (y)| : ;(x, y)<$, x, y # G].

A necessary and sufficient condition for a function f # G to be uniformly
continuous ( f # C) is

lim
$ � +0

|( f ; $)=0. (2.12)

Definition 2.3. A function f # G is called a pixel function of rank k if
f (x)=cp=constant for x # [k; p]; p=0, 1, 2, ..., 2k&1. The set of all pixel
functions of rank k is denoted by Pk .

It is obvious that P0 /P1 /P2 / } } } /Ps / } } } and ��
s=0 Ps =C.

From the definition of the module of continuity it follows directly that
the necessary and sufficient condition for a function P # G to be a pixel
function of rank k is

|(P; $)=0 for $�2&k. (2.13)

The equality (2.13) shows that every pixel function is a continuous
dyadic function. Let us point out that a dyadic pixel function f, defined on
G, is continuous, but the function f� , defined on [0, 1] is a step function
and it is not continuous.
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2.3. Dyadic Exponential Functions

Let p= p0+ p12+ p222+ } } } + ps2s be the binary representation of the
integer p, where pi=0, 1 are the binary digits of p. For a natural number
n define

pn, i=pni+pni+12+ } } } +pni+n&1 2n&1. (2.14)

The addition +4 (addition modulo 2) of two integers m, n is defined as

m+4 n=(m0 +4 n0)+(m1+4 n1) 2+(m2+4 n2) 22+ } } } +(ms+4 ns) 2s.

For the natural number p<2k, the element p2&k # G is defined as

p2&k=( pk&1 , pk&2 , ..., p0 , 0, 0, 0, ...), or 1 } 2&k=2&k,

2 } 2&k=2&k+1, 3 } 2&k=2&k+1+2&k and so on. (2.15)

For x=(x1 , x2 , x3 , ...) # G define

xn, i=xni+12n&1+xni+22n&2 } } } +xni+n . (2.16)

Let 4=[*i (u)]�
i=1 be a sequence of real functions defined for

u=0, 1, 2, ..., 2n&1, * i (0)=1 and

*� i=max[*i (u) : u=0, 1, ..., 2n&1],

*
� i=min[*i (u) : u=0, 1, ..., 2n&1].

Set the notations

*k=(*k(0), *k(1), *k(2), ..., *k(2n&1)),

the 2n dimensional vector of the values of the function *k( } ),

(*k , +k) = :
2n&1

j=0

*k( j) +k( j) and &*k&=- (*k , *k).

Definition 2.4. Call the sequence 4=[*k]�
k=1 normal of rank n if the

products

`
�

i=1

*� i and `
�

i=1

*
� i

are convergent.
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From Definition 2.4 it follows that if 4 is a normal sequence of rank n,
then exists a number N(4) such that

1&2&n�*
�

2
i �*� 2

i �1&2&n for i>N(4),

and for j=0, 1, 2, ..., 2n&1

lim
k � �

`
�

i=k

*i ( j)= lim
k � �

`
�

i=k

*� i= lim
k � �

`
�

i=k

*
� i=1.

A characteristic of a normal sequence 4 is

=(4; 2&s)=max { `
�

i=s+1

*� 2
i &1, 1& `

�

i=s+1

*
�

2
i =� 0 for s � �. (2.17)

Definition 2.5. Let 4 be a normal sequence; then the function

4(x)=c `
�

i=0

*i+1(xn, i); c=4(0)

is called a dyadic exponential function with sequence 4 of rank n.

For i>N(4) the inequalities

*
�

2
i �

2n�2* i ( j)
&* i&

�*� 2
i ; j=0, 1, 2, ..., 2n&1

hold, and hence

}1& `
�

i=s

2n�2*i+1(xn, i)
&*i+1& }�=(4; 2&s). (2.18)

The dyadic exponential function 4 is continuous as

|(4; 2&ns)=c \ `
�

i=s+1

*� i& `
�

i=s+1

*
� i+=2c=(4, 2&s) � 0 for s � �.

The function

g(x)= `
�

i=1

e:2&ixi, g~ (x)=e:x

is a dyadic exponential function of rank 1 with the sequence *k=(1, :e2&k
),

k=1, 2, 3, ... .
In Fig. 1 the completed graph of a dyadic exponential function 4 of

rank 2 is depicted with the sequence shown in Table I.
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FIG. 1. Bottom: The complete graph of a dyadic exponential function 4 of rank 2 with
sequence on Table I. Top: One quarter of the completed graph (supported by a pixel of
rank 2) of 4 expanded (zoomed).

From Definition 2.5 and (2.15) it follows that

f (x+j2&nk)=*k( j) f (x) for x # G (0)
nk , (2.19)

j=1, 2, 3, ..., 2n&1, k=1, 2, 3, ... .
The relation (2.19) shows a type of self-similarity of the dyadic exponen-

tial functions, which is seen in Fig. 1.
If for the sequence of the dyadic exponential function f, *k( j)=1 for

j=0, 1, 2, ..., 2n&1 and k=s+1, s+2, s+3, ..., then f is a pixel function of
rank ns.
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TABLE I

The sequence of 4

i *1(i) *2(i) *3(i) *4(i) *5(i) *6(i) *6(i) } } }

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 } } }
1 0.600 0.900 0.980 1.015 1.010 1.002 1.000 } } }
2 0.825 0.866 0.938 0.864 0.985 0.995 1.000 } } }
3 1.400 1.200 1.077 1.020 1.005 1.003 1.000 } } }

Let f, g be dyadic exponential functions with sequences [*k]�
k=1 ,

[+k]�
k=1 ; then from Definition 2.5 and (2.19) it follows that

( f , g) =|
[0; 0]

f (x) g(x) dx= :
2n&1

j=0
|

[n; j]
f (x) g(x) dx

= :
2n&1

j=0

*1, j +1, j |
[n; 0]

f (x) g(x) dx=
(*1 , +1)

2n 2n |
[n; 0]

f (x) g(x) dx

= } } } = f (0) g(0) `
�

i=1

(*i , +i)
2n , (2.20)

and

&4( } )&2=|c| `
�

i=1

2&n�2 &*i&. (2.21)

3. MULTIRESOLUTION ANALYSIS IN C

The type of multiresolution analysis considered in this paper differs from
the classical one mainly by the type of operators used.

3.1. Rademacher Set of Operators

Let rj ; j=0, 1, 2, ..., k&1 be transformations in the set of k dimensional
vectors a=(a0 , a1 , a2 , ..., ak&1) of the form

rj (a)=(=j, 0aj , =j, 1a j+4 1 , =j, 2aj+4 2 , ..., =j, k&1 aj+4 (k&1)), (3.22)

where =j, l=1, &1; j, l=0, 1, 2, ..., k&1 and =0, l==l, 0=1; l=0, 1, 2, ..., k&1.
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Call the transformations (3.22) Rademacher transformations and the
matrix [=j, l] a Rademacher =-matrix if

(rj (a), rl (a)) = :
k&1

i=0

= j, i aj+4 i= l, ia l+4 i=0 for j{l, (3.23)

j, l=0, 1, 2, ..., k&1, for an arbitrary vector a.
There are Rademacher transformations only for k=2, 22, 23, corre-

sponding to the complex numbers, the quaternions, and the octets of Kelly,
respectively. Three Rademacher =-matrices are

}11
1

&1 } , }
1
1
1
1

1
&1
&1

1

1
1

&1
&1

1
&1

1
&1 } , (3.24)

1 1 1 1 1 1 1 1

. (3.25)

1 &1 1 &1 &1 1 &1 1
1 &1 &1 1 &1 1 1 &1
1 1 &1 &1 &1 &1 1 1
1 1 1 1 &1 &1 &1 &1
1 &1 &1 1 1 &1 &1 1
1 1 &1 &1 1 1 &1 &1
1 &1 1 &1 1 &1 1 &1

Definition 3.1. For a fixed natural number s, a set of 2n operators
rs, j : C � C is called Rademacher set of operators of rank n if

rs, j ( f ; x)== j, l f (x+ j2&ns), for x # G (l)
ns ; j, l=0, 1, 2, ..., 2n&1,

where [=j, l] is a Rademacher =-matrix

The operator rs, 0 is the identity for s=1, 2, 3, ... .
It is easy to see that every Rademacher operator preserves the scalar

product, or for every two functions f, g # C,

(rs, j ( f ; } ), rs, j ( g; } ))=( f , g). (3.26)

Lemma 3.1. Let f # C, s be a natural number and rs, j be a Rademacher
operator of rank n=1, 2, 3. Then

(rs, j ( f ; } ), f )=0 for j=1, 2, ..., 2n&1.

The proof follows directly from the definition of a Rademacher transfor-
mation.
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3.2. Main Theorem
Let 4(x) be a dyadic exponential function of rank n with the sequence

[*i]�
i=1 and let

w0(x)=&4( } )&&1
2 4(x); 4(x)= `

�

i=0

*i+1(xn, i), (3.27)

where

&4( } )&2= `
�

i=1

2&n�2 &*i& (3.28)

is the L2 norm of the dyadic exponential function 4; see (2.21).

Theorem 3.1. Let [Vs]�
s=0 be a sequence of subspaces of the functional

space C, where V0 is the span over the dyadic exponential function 4,
described above, and

f (x) # Vs O rs+1, j ( f ; x) # Vs+1 ; s=0, 1, ..., j=0, 1, ..., 2n&1, (3.29)

where, for every natural s, the operator rs, j , j=0, 1, 2, ..., 2n&1 form in
Rademacher set of operators of rank n (Definition 3.1).

Then

Vs/Vs+1 ; j=0, 1, 2, ...,

.
+�

s=0

Vs is dense in C (V0 is one dimensional ).

Define the sequence [wi]�
i=0 by

wj2 ns&n+p(x)=rs, j (wp ; x); j=1, 2, ..., 2n&1, (3.30)

p=0, 1, ..., 2ns&n&1, s=1, 2, 3, ... and w0 is defined by (3.27).
Then [wi]2ns&1

i=0 is an orthonormal basis in Vs .

Proof. The relation Vs /Vs+1 follows from (3.29), as the operator rs, 0

is the identity for every natural s. The orthonormality of (3.30) directly
follows from Lemma 3.1 and (3.26).

To prove that ��
s=0 Vs is uniformly dense in C, consider the projection

4s : C � Vs :

4s( f ; x)= :
2ns&1

k=0

ck( f ) wk(x), where ck( f )=|
G

f (x) wk(x) dx.
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The operator 4s is represented in the form

4s( f ; x)=|
G

f (t) Ks(x, t) d t; Ks(x, t)= :
2 ns&1

k=0

wk(x) wk(t),

where

Ks(x, t)={2ns `
�

i=s

2n &*i+1&&2
2 *i+1(xn, i) * i+1(tn, i); ;(x, t)�2&ns,

0; ;(x, t)>2&ns.

(3.31)

To prove (3.31), use the representation of wk , which follows from (3.30):

wk(x)=&4( } )&&1
2 `

�

i=0

=kn, i , xn, i
*i+1(xn, i+4 kn, i).

Then

&4( } )&2
2 Ks(x, t)

= :
2ns&1

k=0

`
�

i=0

=kn, i , xn, i
*i+1(xn, i+4 kn, i) =kn, i , tn, i

* i+1(tn, i +4 kn, i)

= `
�

i=s

*i+1(xn, i) *i+1(tn, i) :
2ns&1

k=0

`
s&1

i=0

=kn, i , xn, i
*i+1(xn, i+4 kn, i)

_=kn, i , tn, i
*i+1(tn, i +4 kn, i). (3.32)

On the other side

Ms= :
2 ns&1

k=0

`
s&1

i=0

=kn, i , xn, i
* i+1(xn, i+4 kn, i) =kn, i , tn, i

*i+1(tn, i +4 kn, i)

= :
2ns&n

k=0

`
s&2

i=0

=kn, i , xn, i
*i+1(xn, i+4 kn, i) =kn, i , tn, i

*i+1(tn, i+4 kn, i)

_ :
2n&1

j=0

=j, xn, s&1
*s(xn, s&1+4 j) = j, tn, s&1

*s(tn, s&1 +4 j)

=Ms&1 :
2n&1

j=0

=j, xn, s&1
*s(xn, s&1+4 j) = j, tn, s&1

*s(tn, s&1 +4 j)
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or

Ms={`
s

i=1

&*i &2 for ;(x, t)�2&ns,
(3.33)

0 for ;(x, t)>2&ns

as

:
2 n&1

j=0

=j, xn, i
* i+1(xn, i+4 j) = j, tn, i

*i+1(tn, i+4 j)={&* i &2

0
for xn, i=tn, i ,
for xn, i{tn, i .

Then (3.31) follows from (3.32), (3.28), and (3.33).
From (3.31) calculate

|
G

Ks(x, t) d t= `
�

i=s+1

2n�2*i (xn, i&1)
&*i&2

;

hence, according to (2.18),

"1&|
G

K(x, t) d t"�=(4; 2&s).

Finally for every continuous function f, for s>N(4),

| f (x)&4s( f ; x)|� } f (x)& f (x) |
G

Ks(x, t) d t }+|
G

| f (x)& f (t)| Ks(x, t) d t

�& f & } 1&|
G

Ks(x, t) d t }+|( f ; 2&s)(1+=( f ; 2&s)),

or

| f (x)&4s( f ; x)|�|( f ; 2&s)+(& f &+|( f ; 2&s)) =( f ; 2&s). (3.34)

This completes the proof, according to (2.12) and (2.17).
For the function 4(x)=1, according to (2.17), the estimate (3.34) has

the form

| f (x)&4s( f ; x)|�|( f ; 2&s). (3.35)

The comparison of the inequalities (3.34) and (3.35) shows that for the
entire class C of the continuous dyadic functions, the choice of the constant
1 as a first function is the best one. It is useful to use another first function
if this first function is especially adapted to the function f, which has to be
approximated.
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4. ADAPTATION OF A MULTIRESOLUTION ANALYSIS

In this section we consider finite dimensional subspaces of C. Let s be a
natural number, n=1, 2, 3, and Pns be the set of the pixel functions of rank
ns. Theorem 3.1 provides the possibility to construct orthonormal bases in
Pns , which depend on (2n&1) s free parameters. These parameters may be
used to adapt a basis to a given function f # C. Note that the number of
the free parameters has the order of ln2 N, where N is the number of the
pixels.

4.1. Entropy Criterion

Let [,i]2ns&1
i=0 be an orthonormal basis in Pns , and

ci (,; f )=|
G

f (x) ,i (x) dx, i=0, 1, 2, ..., 2ns&1

be the Fourier coefficients of the function f # Pns .
The entropy criterion, for the adaptation of an orthonormal basis [,i]

to a given function f with & f &2=1, is to minimize the value of the entropy

=2( f , [,i])= & :
2ns&1

i=0

|ci (,; f )|2 ln |ci (,; f )|2. (4.36)

This criterion is the basis for adaptation of Malvar wavelets and wavelet
packets [7].

To calculate the parameters of the first function ,0 , for a given function
f (& f &2=1), in such a way that the entropy (4.36) is minimal, the function
may be solved for small values of s. We do not know practical methods to
solve this problem for values of s, which are interesting for the applications.

4.2. First Coefficient (FC) Criterion

A criterion for adaptation may be to maximize the first coefficient
|c0(,; f )|, that is, to maximize the energy taken by the first Fourier coef-
ficient from the expansion of f in this basis.

For simplicity, we consider this adaptation according to FC criterion
only for first functions, which are dyadic exponential functions of rank 1
(n=1). In the definition of the dyadic exponential function of rank 1 let
*k(1)=!k . The optimization problem we have in hand is to find the maxi-
mum of the function

F(!1 , !2 , ..., !s)=\`
s

i=1

1+!2
i

2 +
&1�2

|
G

f (x) `
s

i=1

!xi
i dx. (4.37)
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The necessary conditions for an extremum of (4.37),

�F
�!1

=
�F
�!2

= } } } =
�F
�!s

=0,

are equivalent to the system

!k=|
Gk

(1)
f (x) !&1

k `
s

i=1

!xi
i dx<|Gk

(0)
f (x) `

s

i=1

!xi
i d x, k=1, 2, 3, ..., s.

(4.38)

For s=3, the equations (4) are

!1=
f4+ f5!3+ f6!2+ f7 !2 !3

f0+ f1 !3+ f2!2+ f3!2!3

,

!2=
f2+ f3!3+ f6!1+ f7 !1 !3

f0+ f1!3+ f4!1+ f5!2 !3

,

!3=
f1+ f3!2+ f5!1+ f7 !1 !2

f0+ f2 !2+ f4!1+ f3!1!2

,

where

fk=|
[3; k]

f (x) dx, k=0, 1, 2, ..., 7.

The equations (4.38) may be solved directly by iteration, as in the right
hand side of every equation from (4.38), the unknown of the left does not
appear. Of course, the iteration, starting with ! (0)

k =1, k=1, 2, 3, ..., s, is
not always convergent and we do not know any specific conditions for this
convergence. The Newton method for solving (4.38) works very well.

Example 1. To illustrate the adaptation by FC criterion, we consider
a simple Iterated Function System (IFS) [2]:

g~ (x)={0.7g~ (2x)+50
0.7g~ (2x&1)+1200

for x # [0, 1�2)
for x # [1�2, 1].

(4.39)

The completed graph of the function g~ is depicted in the bottom of
Fig. 2.
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FIG. 2. Bottom: The completed graphs of the function g~ defined by (4.39). Top: The
dyadic exponential function of rank 1, which maximize the first coefficient of g~ .

The completed graph of the dyadic exponential function 4 of rank 1,
which maximizes the first coefficient of the function g~ , is depicted in Fig. 2
above the function g~ . The sequence of 4 is shown in Table II.

Comparing the graphs of two functions in Fig. 2, we see the similarity
between a fractal function and a dyadic exponential function. Both func-
tions have self-similarity.

TABLE II

The sequence of 4

i *1 *2 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.70 1.42 1.27 1.18 1.12 1.09 1.06 1.04 1.03 1.02 1.01 1.01
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It is interesting to compare the entropies of the pixel representation of g~
(212 pixels), and the representations of g~ by the same number of Fourier
coefficients for three orthonormal systems: Haar, Walsh, and the orthonor-
mal system generated by the first function, which maximizes the first coef-
ficient. The values of these entropies are shown here:

Method Entropy

Pixels 11.657
Haar 0.937
Walsh 0.811
Adapted 0.066

The influence of the adaptation, according to FC criterion, on the mini-
mization of the entropy (4.36) is obvious.

4.3. Backward Minimization (BWM) Criterion
Let W0=V0 and Wi ; i=1, 2, 3, ..., s be the orthogonal compliment of

Vi&1 to Vi , or Vi=Vi&1 �Wi . Then Pns is an orthogonal direct sum of
Wi ,

Pns= � :
s

i=0

Wi . (4.40)

Let f # Pns , & f &2=1, f i be the projection of f on Wi and V0=W0 be the
span over the dyadic exponential function 4(x) with a sequence
[*i (u)]�

i=0 , where *i (u)=1 for u=0, 1, 2, ..., 2n&1, i=s+1, s+2, .... Then
Vs=Pns= ��s

i=0 Wi and

& f &2
2=& f0 &2

2+& f1&2
2+& f2 &2

2+ } } } +& fs&2
2 . (4.41)

R. Coifman and V. Wickerhauser [3] introduce the entropy

=2( f , [Wi])=& :
s

i=0

& fi&2
2 ln & fi &2

2=F( f ; *1 , *2 , ..., *s)

as a measure of distance between f and the orthogonal decomposi-
tion (4.40).

It is possible, for small values of s, to find the values of these parameters
for which =2( f, [Wi]) is minimum. This explicitly solves the problem for
adaptation of the decomposition (4.40) to the function f with respect to the
measure of R. Coifman and V. Wickerhauser [3]. This problem is numeri-
cally difficult to solve for large values of s, which are practically interesting.

We shall modify the criterion for optimization and adaptation of the
decomposition (4.40) to a given function f as follows.
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Definition 4.1. First make & fs&2
2 as small as possible. Second make

& fs&1&2
2 as small as possible. Continue so until & f1&2

2 is made as small as
possible.

The motivation of the BWM criterion is that & fs&2
2 is equal to the sum

of the squares of not less than half of the Fourier coefficients of the func-
tion f. Then & fs&1&2

2 comes, which is equal to the sum of the squares of not
less than one half of the remaining Fourier coefficients of the function f,
and so on. It is natural to make first & fs&2

2 as small as possible as it con-
tributes with the biggest number of coefficients to the entropy of the
Fourier coefficients of f. Having done this, the remaining member of the
sum with most of the Fourier coefficients of f is & fs&1 &2

2 , and so on.
The practical implementation of the BWM criterion is based on the

following statement.

Theorem 4.1. Let f be a fixed function in C, 4(x)=>�
i=0 *i+1(xn, i) be

a dyadic exponential function of rank n, and fk be the projection of f on Wk

(see Theorem 3.1). Then & fk&2
2 is minimal if *k=(*k(0), ..., *k(2n&1)) is the

eigenvector of a symmetric quadratic form

:
2n&1

l=0

:
2n&1

m=0

a l, m!l !m ,

corresponding to the largest eigenvalue of this quadratic form, where al, m

depends only on f and on *i for i>k.

Proof. Let

K� i (x, t)=Ki (x, t)&Ki&1(x, t), K� 0(x, t)=K0(x, t).

From (3.31) we have

K� j (x, t)=

\1&
*j (xn, j&1) *j (tn, j&1)

&*j&2
2 + : j (x) :j (t)

(4.42)

for ;(x, t)�2&nj,

&
*j (xn, j&1) *j (tn, j&1)

&* j&2
2

:j (x) :j (t)

for 2&nj<;(x, t)�2&nj+n,

0 for ;(x, t)>2&nj+n,
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where

:j (x)=2nj�2 `
s

i= j+1

2n�2 &*i&&1
2 *i (xn, i&1),

|
[nj; 0]

:2
j (x) dx=1, :s(x)=1, (4.43)

and

fj (x)=|
G

f (t) K� j (x, t) d t.

From (4.42) we see that K� j (x, t), and hence & fj &2 depends only on * j ,
*j+1 , *j+2 , ..., *s .

From (4.42) for x # [nj; 2np+l]; p=0, 1, 2, ..., 2nj&n&1, l=0, 1, 2, ...,
2n&1 there follows

f j (x) :
2n&1

m=0
|

[nj; 2np+m]
f (t) K� j (x, t) d t

=:j (x) \ f n, j
p, l &&*j&&2 *j (l ) :

2n&1

m=0

*j (m) f n, j
p, m+ , (4.44)

where

f n, j
p, l =|

[nj; 2np+l]
f (t) : j (t) d t. (4.45)

Then

& fj&2
2=|

[0; 0]
f j (x)2 dx= :

2nj&n

p=0

:
2n&1

l=0
|

[nj; 2np+l]
fj (x)2 dx

= :
2nj&n

p=0

:
2n&1

l=0
\ f n, j

p, l &&* j&&2
2 * j (l ) :

2n&1

m=0

*j (m) f n, j
p, m+

2

=&*j&&4 :
2nj&n

p=0

:
2n&1

l=0
\&*j&4

2 ( f n, j
p, l )

2&2 &*j&2
2 *j (l ) f n, j

p, l :
2n&1

m=0

*j (m) f n, j
p, m

+*j (l )2 \ :
2n&1

m=0

*j (m) f n, j
p, m+

2

+
=&*j&&2 :

2nj&n

p=0
\&*j &2 :

2n&1

l=0

( f n, j
p, l )

2&\ :
2n&1

m=0

*j (m) f n, j
p, m+

2

+
= :

2nj&n

p=0

:
2n&1

l=0

( f n, j
p, l )

2&&*j&&2 :
2nj&n&1

p=0
\ :

2n&1

m=0

* j (m) f n, j
p, m+

2

,
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or to minimize & fj&2
2 it is necessary to maximize the symmetric quadratic form

:
2n&1

l, m=0

a l, m!l !m on the unit sphere :
2n&1

l=0

!2
l =1, (4.46)

where

!l=*j (l )�&*j &2 , al, m=am, l= :
2nj&n&1

p=0

f n, j
p, l f n, j

p, m . (4.47)

It is well known that the maximum of the symmetric quadratic form
(4.46) on the unit sphere is obtained if !=!*=(!0*, !1*, ..., !*2n&1) is the
eigenvector of the quadratic form (4.46) corresponding to the largest eigen-
value of this form.

Finaly, & fj &2
2 will be minimal if *j=* j*=(1, !1* �!0*, !2* �!0* , ..., !*2n&1�!0*).

This completes the proof as from (4.43), (4.45), and (4.47) is seen that
al, m depends only on f and on *i for i>k.

To adapt a dyadic exponential function 4, to a given function f, accord-
ing to the BWM criterion, we calculate first the values *s( j), j=1, 2, 3, ...,
2n&1, according to Theorem 4.1. For this purpose we find the eigenvector,
corresponding to the biggest eigenvalue of a quadratic form with coef-
ficients depending only on f. Then we calculate, according to Theorem 4.1,
the values *s&1( j), j=1, 2, 3, ..., 2n&1. (For this we find the eigenvector,
corresponding to the biggest eigenvalue of a quadratic form with coef-
ficients depending only on f and the already calculated values *s( j),
j=1, 2, 3, ..., 2n&1.) Next, in the same way we calculate the values *k( j),
j=1, 2, 3, ..., 2n&1 for k=s&2, s&3, ..., 1.

Example 2. To illustrate the BWM method, we consider the function
h in the bottom of Fig. 3, which represents the Solar flux (in 2800 MHz)
for a period of 4096 days, represented with 212 pixels. In the top of Fig. 3
is the dyadic exponential function 4 of rank 3, adapted according to the
BWM method. The sequence of 4 is shown here:

i *1(i) *2(i) *3(i) *4(i)

0 1.000 1.000 1.000 1.000
1 0.711 0.950 1.009 0.999
2 0.711 0.978 0.977 0.998
3 1.471 1.007 0.985 0.999
4 2.246 1.023 1.011 1.001
5 2.172 1.040 1.014 1.000
6 1.531 1.027 0.987 0.999
7 0.960 1.021 0.955 1.003
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FIG. 3. Bottom: Data from Solar flux. Top: Dyadic exponential function of rank 3,
optimized for these data according to the BWM criterion.

The respective entropies, considered in the Example 1, are shown here:

Method Entropy

Pixels 11.465
Haar 1.349
Walsh 1.398
Adapted 0.497

Remarks. 1. There exist algorithms of complexity O(N ln2 N), for N
pixels, to adapt the dyadic exponential function to a given function f in
respect to the BWM criterion.
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2. The functions *i , forming the dyadic exponential function in
Theorem 4.1, may be of different rank. Then the Rademacher set of
operators from Vi to Vi+1 has to be chosen accordingly.

3. The orthonormal system (3.30) is of Walsh type (functions with
full support). It is possible to construct orthonormal system of Haar type
to replace (3.30) in Theorem 3.1.
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